Mg(2) and in addition by K(2). Atom O(3) appears therefore to be locked in, which is reflected in the fact that the amplitude of its thermal motion is the smallest of the three oxygen atoms and that its motion seems to be isotropic within the limits of error. The details of the orientation of the thermal ellipsoids thus are in qualitative agreement with the geometrical arrangements in this crystal structure.

Table 7. K₂Mg₅Si₁₂O₃₀, root-mean-square thermal displacements along principal axes and their orientations relative to a, b and c

		Displace-	А	ngle with ax	is
	Axis	ment	[100]	[010]	[001]
K(1)	1	0·111 (4) Å	_	_	90°
~ /	2	0.111	_	_	90
	3	0.154 (5)	90°	90°	0
K(2)	1	0.106 (5)	-		90
•	2	0.106	—		90
	3	0.136 (6)	90	90	0
Mg(1)	1	0.077 (5)	-	_	90
	2	0.077	-		90
	3	0.119 (5)	90	90	0
Mg(2)	1	0.087 (6)	90	30	90
-	2	0.112 (4)	90	90	0
	3	0.116 (5)	0	120	90
Si	1	0.088 (2)	68 (34)	87 (16)	28 (29)
	2	0.090 (2)	157 (32)	64 (5)	67 (33)
	3	0.109 (2)	98 (5)	26 (5)	104 (5)
O(1)	1	0.095 (6)	90	90	0
•	2	0.155 (6)	32 (85)	152 (85)	90
	3	0.158 (5)	58 (85)	62 (85)	90
O(2)	1	0.105(5)	27 (5)	145 (4)	81 (7)
. ,	2	0.132 (4)	78 (8)	91 (8)	166 (8)
	3	0.157 (4)	67 (4)	55 (4)	79 (8)
O(3)	1	0.108 (5)	99 (32)	21 (29)	96 (21)
	2	0.113 (5)	158 (27)	73 (34)	109 (24)
	2	0.121 (4)	110 (24)	78 (17)	20 (23)

We thank the N.S.F. (grant GD-7275 to the Computer Center and grant GA-314 for experimental apparatus) and the Research Board of the Graduate College of the University of Illinois at Chicago for the support of this work. We are grateful to Mrs Margaret Myers for providing the microprobe analysis, and to Drs F. Seifert & W. Schreyer for critical reading and constructuve criticism of the manuscript.

References

- BAUR, W. H. (1970). Trans. Amer. Cryst. Assoc. 6, 129.
- BAUR, W. H. (1971). Amer. Miner. 56. 1573.
- BAUR, W. H. & KHAN, A. A. (1970). Acta Cryst. B26, 1584.
- BROWN, G. E. & GIBBS, G. V. (1969). Amer. Miner. 54, 101.
- DODD, R. R., VAN SCHMUS, W. R. & MARVIN, U. B. (1965). Science, 149, 972.
- FORBES, W. C. (1972). Miner. Mag. In the press.
- ITO, T., MORIMOTO, N. & SADANAGA, R. (1952). Acta Cryst. 5, 209.
- MIYASHIRO, A. (1956). Amer. Miner. 41, 104.
- OLSEN, E. (1967). Amer. Miner. 52, 1519.
- Olsen, E. & Bunch, T. E. (1970). Amer. Miner. 55, 875.
- PASHEVA, Z. P. & TARKHOVA, T. N. (1953). Dokl. Akad. Nauk SSSR, 88, 807.
- PLUMIER, R. & TARDIEU, A. (1963). C. R. Acad. Sci. Paris, 257, 3858.
- ROEDDER, E. W. (1951). Amer. J. Sci. 249, 81, 774.
- SEIFERT, F. & SCHREYER, W. (1969). Contr. Mineral. Petrol. 22, 190.
- SMITH, J. V. (1953). Amer. Miner. 38, 643.
- ZOLTAI, T. (1960). Amer. Miner. 45, 960.
- ZORINA, N. G. & KVITKA, S. S. (1969). Sov. Phys. Crystallogr. 13, 599

Acta Cryst. (1972). B28, 272

The Crystal Structures of Polymorphs I and III of Sulphathiazole

BY G. J. KRUGER AND G. GAFNER

Chemical Physics Group, National Physical Research Laboratory, Council for Scientific & Industrial Research, P.O. Box 395, Pretoria, South Africa

(Received 11 March 1971)

The crystal structure of sulphathiazole II is known. The crystal structures of the other two known crystalline forms of sulphathiazole (N'-2-thiazolylsulphanilamide) have now been determined and are reported. The intensities were measured using Mo $K\alpha$ radiation and an automatic diffractometer. The structures were solved by the application of the Karle-Hauptman \sum_2 relationship and refinement was done by full-matrix least-squares methods. The main differences between the polymorphs of sulphathiazole lie in the hydrogen bonding and its effects on the arrangement of the molecules in the crystals.

Introduction

In the paper reporting the structure determination of sulphathiazole II (Kruger & Gafner, 1972) crystallographic data for the other two known polymorphs, modifications I and III, were listed. This information is repeated here in Table 1. In order to investigate the structural differences involved in the polymorphism of sulphathiazole, the crystal structures of sulphathiazole I and III have now been determined.

Experimental

The intensity data were collected from roughly cubical crystals with side lengths not exceeding 0.2 mm using a Hilger & Watts four-circle automatic diffractometer. In both cases the intensities were measured using the ω -scan method and Zr-filtered Mo radiation. Only the unique reflexions with $2\theta \le 40^\circ$ were measured for sulphathiazole I since the proportion of unobservable intensities became too high above this limit. All reflexions with $2\theta \le 55^\circ$ were measured for sulphathiazole III. Corrections for absorption were not applied as μR was less than 0.05 in both cases.

Determination of the structures

It was not found possible to use the heavy-atom method owing to the presence of two molecules in the asymmetric unit of each crystal. The structures were

Fig. 1. The numbering of atoms in the sulphathiazole molecule.

thus solved by the symbolic addition procedure using the phase determination programs included in the X-ray 67 (Stewart, 1967) computing system.

In the case of sulphathiazole I, the phases of 173 reflexions with E values greater than 1.5 were determined and the E map calculated from them revealed the positions of the four sulphur atoms in the asymmetric unit. A Fourier synthesis phased on the contributions of the sulphur atoms gave the positions of the other 28 non-hydrogen atoms.

All reflexions with E values greater than 1.4 were used for the phase determination of sulphathiazole III. The phase determination process gave two possible sets of phases for the 362 reflexions. E maps were calculated with both sets. Only one of these could be interpreted and this gave the positions of the 32 non-hydrogen atoms.

The refinement of atomic parameters

Refinement was done by full-matrix least-squares procedures using the program *ORFLS* of Busing, Martin & Levy (1962). The atomic scattering factors used were those given by Hanson, Herman, Lea & Skillman (1964). Only the observed reflexions were used in the refinement of the structures (Dunning & Vand, 1969), that is, all the intensities higher than $2\sigma(I)$ where $\sigma(I)$ is the estimated standard deviation in intensity as determined from counting statistics.

(a) Sulphathiazole I

Of the 3328 reflexions recorded, 1843 were used in the refinement. After refinement of the positional and anisotropic thermal parameters, a three-dimensional difference Fourier synthesis was calculated. All hydrogen atoms could be found with the exception of the four bonded to amine nitrogen atoms. In subsequent refinement the 14 hydrogen atoms which could be located were included and given the anisotropic thermal parameters of the atoms to which they were bonded. Only their positional parameters were varied.

The most satisfactory method of weighting was found to be a modification of the weighting scheme proposed by Hughes (1941), where

Table 1. Crystal data for the polymorphs of sulphathiazole

Polymorph	I	II	III
Melting point (°C)	200-202	200-202	173-175 200-202
Transition point (°C) Habit	elongated rods	173–175 hexagonal prisms	or - 173-175 hexagonal plates
Space group	$P2_{1}/c$	$P2_{1}/c$	$P2_1/c$
a (Å)	10.554 (5)	8.235 (4)	17.570 (9)
b (Å)	13.220 (7)	8.550 (4)	8.574 (4)
c (Å)	17.050 (8)	15.558 (8)	15.583 (8)
β(°)	108.06 (1)	93.67 (1)	112.93 (1)
Z	8	4	8
D_m (g.cm ⁻³)	1.50	1.55	1.57
D_c (g.cm ⁻³)	1.499	1.550	1.567

POLYMORPHS I AND III OF SULPHATHIAZOLE

Table 2. Observed and calculated structure factors on $a \times 10$ absolute scale

(a) Sulphathiazole I

$\begin{array}{c} 10 \\ 10 \\ 11 \\ 10 \\ 11 \\ 10 \\ 11 \\ 10 \\ 11 \\ 10 \\ 11 \\ 10 \\ 10 \\ 11 \\ 10 \\$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c} 12 & 140 & 151 \\ 1 & 1 & 1 & 151 \\ 1 & 1 & 1 & 121 \\ 1 & 1 & 10 & 100 \\ 1 & 10 & 100 & 100 \\ 1 & 10 & 10$
$ \begin{array}{c} 1 & 111 & 111 & 100 \\ 3 & 10 & 111 & 111 & 117 \\ 3 & 10 & 101 & 207 \\ 3 & 10 & 111 & 101 & 117 \\ 3 & 10 & 101 & 207 \\ 1 & 10 & 207 & 208 \\ 1 & 10 & 208 & 207 \\ 1 & 10 & 10 & 208 \\ 1 & 207 & 100 \\ 1 & 10 & 208 & 207 \\ 1 & 10 & 10 & 208 \\ 1 & 208 & 207 \\ 1 & 10 & 208 & 207 \\ 1 & 10 & 208 & 207 \\ 1 & 10 & 208 & 207 \\ 1 & 10 & 208 & 207 \\ 1 & 10 & 208 & 207 \\ 1 & 11 & 10 & 208 \\ 1 & 10 & 208 & 207 \\ 1 & 11 & 111 & 208 \\ 1 & 10 & 208 & 208 \\ 1$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c} \textbf{x} \ $
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$

 $w = F_{obs}/16.0$ for $F_{obs} \le 16.0$ $w = 16.0/F_{obs}$ for $F_{obs} > 16.0$.

When refinement was terminated the final unweighted R was 0.080 and the weighted R was 0.069.

The observed and calculated structure factors of the observed reflexions are listed in Table 2(a) and the

final atomic parameters and estimated standard deviations are given in Table 3. The numbering of the atoms is as in Fig. 1.

(b) Sulphathiazole III

2729 of the 6137 reflexions recorded were regarded as observable and the refinement was based on them.

Table 2 (cont.)

$ \begin{array}{ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

After anisotropic refinement a difference Fourier synthesis was calculated and this revealed the positions of the 18 hydrogen atoms. During further refinement they were included with the same temperature factors as the atoms to which they were bonded and these parameters were kept constant. The weighting scheme of Hughes was again used. The final residuals were R =0.063 and $R_w = 0.048$.

The observed and calculated structure factors of the observed reflexions are listed in Table 2(b) and the final atomic parameters and estimated standard deviations are given in Table 3.

Discussion

Two molecules are contained in each asymmetric unit and this situation allowed the determination of two independent molecular structures in each case. In the discussion following and in the Tables and Figures the two molecules belonging to each structure are distinguished by labelling them A and B. Intramolecular bond lengths and angles were calculated with the function and error program *ORFFE* of Busing, Martin & Levy (1964) and are listed in Table 4. The estimated errors given for individual bond lengths and angles take into account both the least-squares estimated standard deviations and the estimated cell constant errors. Neither the bond lengths nor their errors have been corrected for thermal motion. The standard deviations of bond lengths and angles involving hydrogen atoms have average values of approximately ± 0.05 Å and $\pm 3^{\circ}$, respectively, and are not listed separately. Since the hydrogen atoms which could be found could not be accurately located, no further discussion of their positions is made.

Comparison of the values found here with the bond lengths and angles obtained for sulphathiazole II indicates that the molecular structure of sulphathiazole is the same in all three crystalline modifications. The differences between the bond lengths and angles determined in the five independent molecules and their mean

POLYMORPHS I AND III OF SULPHATHIAZOLE

Table 2 (cont.)

(b) Sulphathiazole III

$\begin{bmatrix} 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 0 \\ 1 & 2 & 1 \\ 1 & 1 & 0 \\ 1 & 2 & 1 \\ 1 & 1 & 0 \\ 1 & 2 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1$
N.K.L Sec. 124 113 -135 133 -135 131 -136 133 -135 133 136 133 -136 136 136 134 -136 136 136 134 -136 136 136 134 -136 136 136 134 -136 131 136 131 -136 131 -136 131 -137 136 131 -137 131 -137 136 131 -137 131 -137 136 131 -137 131 -137 137 -138 131 -137 131 -137 137 -138 131 -137 131 -132 -137 137 -138 131 132 -138 132 -138 136 131 132 -138 136 136
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c} 1 & -1 & 663 & -617 \\ 1 & 0 & -1 & 663 & -617 \\ 1 & 0 & -1 & -1 & -617 \\ 1 & 0 & -1 & -1 & -1 & -1 \\ 1 & 2 & -51 & -257 \\ 1 & 0 & -277 & -250 \\ 1 & 0 & -277 & -250 \\ 1 & 0 & -277 & -270 \\ 1 & 0 & -277 & -270 \\ 1 & 0 & -277 & -270 \\ 1 & 0 & -277 & -270 \\ 1 & 0 & -277 & -270 \\ 1 & 0 & -277 & -270 \\ 2 & -10 & 156 & -157 \\ 2 & -10 & 156 & -157 \\ 2 & -10 & 156 & -157 \\ 2 & -10 & 156 & -157 \\ 2 & -10 & 156 & -157 \\ 2 & -10 & 156 & -157 \\ 2 & -10 & 156 & -157 \\ 2 & -10 & 156 & -157 \\ 2 & -10 & 156 & -157 \\ 2 & -10 & 156 & -157 \\ 2 & -10 & -108 & -108 \\ 2 & -2 & -10 & -108 \\ 2 & -2 & -10 & -108 \\ 2 & -2 & -10 & -108 \\ 2 & -2 & -10 & -108 \\ 2 & -1 & -177 & -1028 \\ 2 & -2 & -10 & -108 \\ 2 & -2 & -10 & -108 \\ 2 & -1 & -177 & -108 \\ 2 & -1 & -177 & -108 \\ 2 & -1 & -177 & -108 \\ 2 & -1 & -177 & -108 \\ 2 & -1 & -177 & -108 \\ 2 & -1 & -111 & -127 \\ 2 & -1 & -111 & -127 \\ 2 & -1 & -111 & -127 \\ 2 & -1 & -111 & -127 \\ 2 & -1 & -1111 & -177 \\ -1 & -2 & -184 & -1277 \\ -1 & -1 & -10 & -1111 & -177 \\ -1 & -2 & -184 & -1277 \\ -1 & -1 & -10 & -1111 & -177 \\ -1 & -2 & -184 & -1277 \\ -1 & -1 & -10 & -1111 & -177 \\ -1 & -2 & -10 & -184 \\ -1 & -111 & -177 \\ -1 & -2 & -111 & -272 \\ -1 & -1 & -10 & -1111 & -177 \\ -1 & -2 & -10 & -1011 \\ -1 & -1 & -10 & -1111 \\ -1 & -1 & -10 & -1111 \\ -1 & -1 & -10 & -1011 \\ -1 & -1 & -10 & -1011 \\ -1 & -1 & -10 & -1011 \\ -1 & -1 & -10 & -1011 \\ -1 & -1 & -10 & -1011 \\ -1 & -1 & -10 & -1011 \\ -1 & -1011 \\ -1 & -1011 \\ -1 & -1011 \\ -1 & -1011 \\ -1 & -101$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c} \mathbf{k} & \mathbf$

values are small and do not justify a discussion of the effects of external influences on the molecular structures.

The equations of the equally weighted least-squares planes through the benzene and thiazole rings (excluding the S(2) sulphur atoms), as well as the deviations of the individual atoms from these planes, are listed in Table 5. As in the case of sulphathiazole II the deviations of the benzene ring atoms from the best planes are very small while the substituent sulphur and nitrogen atoms are markedly displaced. The five membered ring is non-planar as shown by the displacement of the sulphur atom and the substituent nitrogen atoms also deviate considerably from the best planes. The dihedral Table 2 (cont.)

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
0 0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c} 9910\\ 4&4&-8\\ 1&10\\ 5&5&-9\\ 4&4&-7\\ 1&10\\ 1&10\\ 4&4&-7\\ 1&10\\$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

angles in the four molecules are listed in Table 5. The big differences between them are the only significant quantitative differences between the molecular geometry in the polymorphs of sulphathiazole.

The crystal structures of sulphathiazole I and III are illustrated by the stereo pairs (Johnson, 1965) of their unit-cell contents in Figs. 2 and 3. Hydrogen bond distances and other close intermolecular approaches are listed in Table 6.

In sulphathiazole I, centrosymmetric dimers are formed by pairs of molecules through symmetrical hydrogen bonds between nitrogen atoms N(2) and N(3). Separate dimers are bonded together through hydrogen bonds between atoms N(1) and O(1) and O(2). Only

POLYMORPHS I AND III OF SULPHATHIAZOLE

Table 2 (cont.)

			į			Ì			ĺ	i							
1 -7 87 -7 1 -5 282 -29 1 -4 304 29 1 -3 385 -37 1 -2 151 16 1 -1 495 -49 1 0 93 -55	1 -12 659 65 1 -11 340 35 1 -9 226 21 1 -8 511 -49	2 11 310 -33 2 12 130 -11 1 -19 114 -9 1 -15 97 7	2 3 254 24 2 6 99 8 2 7 130 9	2 -2 118 -12 2 -1 181 -18 2 0 84 4 2 1 449 44	2 -7 302 -32 2 -5 569 -57 2 -4 155 -14	2 -13 177 19 2 -11 190 -20 2 -9 437 44 2 -8 228 22	3 4 328 32 3 7 397 -40 3 12 119 -12 2 -15 418 40	3 0 557 550 3 1 171 -10 3 3 165 179	3 -4 105 -14 3 -3 265 26 3 -2 211 -22 3 -1 80 10	3 -8 257 253 3 -7 145 144 3 -5 412 -42	3 -12 294 29 3 -11 392 -41 3 -9 236 -23	4 10 164 -166 3 -16 237 229 3 -15 130 143 3 -13 126 13	4 5 134 124 4 6 141 104 4 7 253248 4 8 181196	4 -1 200 214 4 0 356 357 4 2 147 189 4 4 162 -189	4 -8 428 -422 4 -5 224 235 4 -4 235 225 4 -3 240 231	4 -13 256 261 4 -12 106 -84 4 -11 211 191	5 10 188 -201 4 -16 163 134 4 -15 121 -100
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 5 -1 194 -229 5 1 132 -133 5 2 283 264 5 5 109 98	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3 5 -13 180 178 5 -12 90 -50 5 -7 229 229 5 -7 229 229 201 201 201 201	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8 6 -4 118 150 6 -3 155 -140 7 6 -2 199 -184 1 6 0 99 -124	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8 7 6 118 151 2 6 -14 120 -81 6 -11 112 89	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7 -13 134 -105 7 -10 202 189 7 -7 111 75	8 -6 121 -112 8 -3 261 -298 8 5 122 125	9 -7 223 -251 9 -4 136 -90 8 -13 113 88 8 -10 2(8, -183)	0 0 749 -769 0 2 363 -335 0 1 288 301 0 10 131 156	0 -8 618 611 0 -6 98 10 0 -1 215 -227 0 -2 191 -235	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 6 150 147 1 7 175 184 1 8 141 -197	1 2 93 -80 1 3 m-0 -692 1 4 630 625
U 2 448 464 0 4 164 151 0 8 176 -113 14, K, L 9 -7 119 151 9 2 130 -119 8 -9 111 -155	0 -10 359 361 0 -6 236 -255 0 -2 263 249 0 0 225 -209	1 6 118 -161 1 9 148 -147 0 -18 213 218 0 -14 303 311	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 -14 111 -105 1 -13 153 154 1 -11 190 203 1 -10 267 6380	2 12 155 -119 1 -18 125 111 1 -17 142 140 1 -15 101 98	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 -3 212 211 2 -2 310 307 2 1 579 391 2 2 209 213	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 - 13 - 196 - 195 2 - 13 - 196 - 195 2 - 13 - 117 - 107 2 - 13 - 110 - 140	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 = 4 = 175 = 201 3 = 4 = 524 = 535 3 = 2 = 530 = 522 3 = 0 = 156 = 158	3 -11 106 -110 3 -10 197 -204 3 -9 271 284 5 3 -6 213 223	4 10 101 175 5 -18 155 118 3 -14 104 -001 3 -13 150 -100	4 -2 344 -318 1 2 111 -113 1 4 104 -80	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 6 157 137 3 11 162 -158 2 -17 130 -146 2 -16 149 -157	1 0 376 -379 3 2 150 -151 4 356 351	3 -8 101 117 3 -5 277 -281 3 -4 106 -283 3 -1 229 211	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 -3 118 -127 4 0 258 259 4 2 94 100 3 -10 211 -207	- 4 -11 -112 - 105 - 4 -29 - 92 - 103 - 4 -8 -294 - 293 - 4 -4 -192 - 4196	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 -1 102 -103 5 0 112 -104 5 1 152 104 5 1 119 -156	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 -13 173 158 5 -12 191 -159 5 -11 116 -109	6 0 120 120 6 6 133 142 5 -47 111 -76 5 -15 137 133	$a_1 = a_2 = 228 = -221$ $a_1 = -1 = -373 = -379$ $a_2 = -3 = -113 = -113$ $a_3 = -1 = -228 = -296$	7 -4 115 88 6 -40 122 -7 6 -20 127 -110 7 -6 123 -129	7 -11 -014 -08 7 -28 -226 -4240 7 -27 -124 -129 7 -21 -144 -144	8 41 123 122 8 6 187 4167 7 417 129 129	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 6 248 -260 2 -14 107 -38 2 -13 121 -109 2 -10 317 325	5 2 122 106 5 3 97 68 3 4 183 174 3 5 191 -172	(23 260 263 3 -1 155 -166 3 1 129 -113 1 5 155 -16	3 -11 107 90 3 -11 100 -182 4 -10 389 -382 4 -23 105 233	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	[3] 3 100 -117 [3] 3 402 -168 [4 -11 189 -186 [4 -7 105 -122]	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6 16 102 33 6 13 106 100 6 1 123 105 3 10 98 89	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7 -7 10 -100 7 -7 110 -100 7 -0 111 104 7 1 177 -177	9	0 1 100 -80 0 8 010 00 15, k, l, 9 -8 118 90	0 -8 419 1 0 -1 190 -1 0 0 198 181 0 2 85 -78	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 (107-199 1 1 98 ±10 1 2 113 83	1 (21 - 64) 200 1 - 6 - 88 - 201 1 - 1 - 1 - 8 - 174
$\begin{bmatrix} 2 -11 & 161 & 150 \\ 2 -8 & 90 & -110 \\ 2 -7 & 90 & 111 \\ 2 -5 & 280 & 274 \\ 2 & 1 & 121 & -92 \\ 2 & 3 & 149 & -140 \\ 2 & 4 & 149 & -140 \end{bmatrix}$	$ \begin{vmatrix} 2 & -1n & 129 & -9n \\ 2 & -15 & 119 & -111 \\ 2 & -13 & 138 & -137 \\ 2 & -12 & 237 & -213 \end{vmatrix} $	3 41 126 -114 3 0 310 -302 3 1 159 -115 3 7 123 119	(+3 200 221 (+4 173 -196 (+3 90 -81	 1 3 159 178 3 -17 120 -102 3 -12 133 -131 3 -6 232 220 	4 0 105 81 4 1 101 -70 4 2 110 -152 4 3 225 -198	4 -7 91 86 4 -5 131 -137 1 -1 242 -230	[3] 7 141 127 4 -15 153 122 1 1 -13 127 -199 1 1 -8 198 198	V =3 97 =-01 V =1 13V =122 V 0 101 =117	5 -10 -137 - 121 5 -12 -117 - 112 5 -9 -170 - 141 5 -8 -162 -117	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10, k, 1 7 -7 119 133 7 0 148 173	0 0 98 -113 0 2 418 414 0 4 103 73	1 10 134 -136 0 -14 319 425 0 -10 160 124 0 -6 103 -38	$\begin{vmatrix} 1 & 1 & 164 & -176 \\ 1 & 2 & 128 & -146 \\ 1 & 4 & 122 & 176 \\ 1 & 3 & 366 & 286 \end{vmatrix}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 -21 -138 -402 1 -18 -101 -117 1 -11 -172 -463
0 141 -113 -0 -7 108 -70 -0 108 102 102 -0 108 162 102 5 -9 114 90 5' -8 112 51 5 -5 191 197 5 -5 191 197	1 2 188 19 1 -10 178 172 0 -2 175 -102 18, k, L	1 = -5 = 168 = -159 1 = -3 = 155 = -141 1 = -1 = 126 = -95 1 = 1 = -561	2 2 109 -92 1 -13 197 182 1 -0 136 165	$\begin{vmatrix} 2 & -7 & 180 & -162 \\ 2 & -3 & 195 & -186 \\ 2 & -2 & 160 & -96 \\ 2 & -1 & 122 & 186 \end{vmatrix}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{vmatrix} 3 & -4 & 151 & -161 \\ 3 & 0 & 121 & -118 \\ 3 & 2 & 221 & 212 \\ 3 & 3 & 110 & -130 \end{vmatrix}$	V 44 179 192 V 40 250 234 V 47 130 4121 V 40 172 408	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1 -13 100 02 1 -13 133 102 1 -13 117 100 1 -10 136 -126	5 1 109 25 1 -18 112 103 1 -15 171 145	5 =9 111 =96 5 =7 190 =215 5 0 127 =93	5 -7 -112 - 84 5 -3 -114 - 156 6 -2 -138 - 113 6 -2 -133 - 119	8 -3 153 189 7 -6 173 176 7 -6 119 -75 6 -10 110 -90	0 2 152 154 0 4 175 -167 17, 8, 1 8 -10 128 109	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 = 5 = 209 = 215 1 = 4 = 314 = 533 1 = 16 = 186 = -186 n = 15 = 135 = -314	2 6 107 -121 1 -11 111 -138 1 -5 125 -156
0 0 0 104 113 0 2 277 -273 20, K, U 7 -8 141 124 6 -5 177 170 5 -8 172 178 3 -1 136 198	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 -11 103 -174 1 -10 123 156 2 -7 187 183	2 -14 132 -487 2 -11 122 -76 2 -77 225 -245 3 -5 355 -154	 i =2 235 -224 j = 0 176 -424 i = 3 - 3 153 -149 2 -15 101 -424 	3 -11 129 123 3 -10 257 266 3 -3 143 -137	4 -1 113 -77 4 -2 223 232 1 3 -18 121 -100 3 -13 117 -80	$\begin{bmatrix} 3 & -3 & 199 & -187 \\ 4 & -14 & 203 & 221 \\ 4 & -10 & 114 & -75 \\ 4 & -6 & 235 & -214 \end{bmatrix}$	6 -7 5.6 -175 6 1 120 132 5 -10 131 -149	0 2 121 138 197 k, 4 7 -0 197 -070	1 4 151 -180 0 -12 157 118 0 -8 004 -525 0 0 25 108	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 7 133 2133 1 215 129 89 1 213 101 109 1 212 137 2123	2 - 2 - 116 - 47 2 - 1 - 341 - 36 2 - 1 - 110 - 276 2 - 1 - 113 - 291	2 -10 113 -143 2 -0 104 -143 2 -7 230 223 2 -3 129 99	3 41 254 200 3 4 156 -156 2 -17 115 111 3 5 6 115 41	4 0 197 -203 3 -12 189 -186 5 -11 184 178 5 -13 97 297	5 0 192 175 4 -1 134 -259 4 -8 229 230
0 -4 152 136	2 -5 118 106 1 -8 145 124 0 -12 167 -160 0 -8 128 -129	0 -14 118 107 0 -6 170 -152 24, k, b	3 -10 113 -214 3 -7 133 129 4 -11 123 118 1 10 144 171	 4 -8 163 -137 3 -12 133 -128 6 -8 198 199 22, k, 1 	22, k, 1 5 =5 161 =186 1 =12 128 71	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 -7 17 19 2 -7 17 19 2 -9 20 20 1 -11 198 -198	3 47 145 469 5 46 141 115 3 44 115 98 5 51 186 15	# -16 142 143 4 -3 117 106 3 -14 135 -123	6 1 113 129 0 412 302 285 0 44 177 4172 21, K, I	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 25 128 250 2 25 269 258 2 3 152 552 1 68 153 611	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	 -8 111 -135 3 -7 10 - 304 3 - 0x -8 5 x 15y 15y 	1 =12 1 5 =1 9 4 =1 19 50 4 =1 19 10

Fig.2. A stereopair showing the unit cell and its contents of sulphathiazole 1 viewed along the b axis with the a axis horizontal.

G. J. KRUGER AND G. GAFNER

Table 3. Positional and thermal parameters

(a) Atomic parameters (×104) with e.s.d.'s for the non-hydrogen atoms of sulphathiazole I and III. Positional parameters are given as fractional coordinates and thermal parameters are given according to the expression

$$T = \exp\left[-(\beta_{11}h^2 + \beta_{22}k^2 + \beta_{33}l^2 + 2\beta_{12}hk + 2\beta_{13}hl + 2\beta_{23}kl)\right].$$

The e.s.d.'s are given in brackets and refer to the least significant figures in the parameter values. The values given for each parameter are from top to bottom, for sulphathiazole I, molecules A and B, and sulphathiazole III, molecules A and B respectively.

	x	у	Z	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}
S(1)	3221 (3)	709 (2)	1220 (2)	109 (3)	71 (2)	40 (1)	- 1 (2)	11 (2)	9 (1)
	8063 (2)	4260 (2)	884 (2)	84 (3)	84 (2)	32 (1)	- 2 (2)	10 (1)	11 (1)
	3829 (1)	3982 (2)	5584 (1)	22 (1)	87 (2)	29 (1)	3 (1)	5(1)	1(1)
5(2)	8916 (1)	3802 (2)	81/8(1)	23(1)	1/9 (2)	$\frac{27(1)}{57(2)}$	-14(1)	-9(2)	25 (2)
5(2)	6434(3)	2537 (2)	4660 (2)	157 (4)	61(2)	72(2)	-3(3)	36(2)	6(2)
	3558 (1)	1741(2)	3781 (1)	64 (1)	139 (3)	29 (1)	16 (1)	13 (1)	1 (1)
	8635 (1)	1513 (2)	6404 (1)	71 (1)	128 (3)	26 (1)	13 (1)	12 (1)	1 (1)
O(1)	1868 (6)	402 (5)	1801 (4)	106 (8)	96 (6)	68 (4)	-23(5)	29 (4)	10 (4)
	8375 (6)	5270 (5)	1193 (4)	146 (9)	79 (6)	60 (4)	-32(6)	2 (4)	13 (4)
	4314 (2)	4/81 (4)	6445 (2) 9027 (3)	$\frac{28}{33}(2)$	100 (6)	41(2) 42(2)	-3(3)	-1(2)	-20(3)
O(2)	4206 (7)	345 (6)	1951 (4)	167(10)	90 (6)	48 (4)	12(7)	$\frac{1}{7}(5)$	20 (4)
-(_,	8726 (6)	3875 (6)	342 (4)	120 (9)	162 (8)	36 (3)	12 (7)	29 (4)	18 (4)
	3761 (2)	4755 (5)	4733 (3)	31 (2)	141 (6)	44 (2)	6 (3)	14 (2)	27 (3)
	8870 (2)	4502 (5)	7323 (3)	33 (2)	136 (7)	40 (2)	3 (3)	13 (2)	20(3)
N(I)	3359 (8)	5164 (7)	1483 (5)	197 (13)	55 (7) 93 (8)	45 (4)	-1(8)	26 (6)	38 (5)
	449 (3)	3047(7)	5498 (3)	26(3)	95 (7)	37 (3)	-4(7)	7 (3)	1(3)
	5538 (3)	3230 (6)	8172 (3)	31 (2)	104 (8)	43 (3)	7 (4)	10 (2)	13 (4)
N(2)	3758 (7)	345 (6)	476 (5)	87 (8)	77 (6)	41 (4)	6 (6)	8 (5)	- 1 (4)
	6470 (7)	4295 (6)	462 (4)	106 (9)	66 (6)	27 (3)	6 (7)	10 (4)	-4(4)
	4202 (3)	2246 (5)	5693 (3)	30 (2)	108 (8)	29 (2)	19(3)	(2)	-1(3)
N(3)	9238 (3) 3433 (6)	2030 (3) 4937 (6)	4086 (5)	88 (9)	66 (6)	36 (4)	-10(6)	-7(5)	1 (4)
1(5)	4550 (8)	1308 (6)	4508 (5)	109 (10)	58 (6)	47 (4)	12 (7)	4 (5)	7 (4)
	4107 (3)	- 219 (5)	5081 (3)	33 (2)	102 (7)	40 (3)	0 (3)	15 (2)	- 2 (4)
~~~	9202 (3)	- 439 (5)	7706 (3)	29 (2)	83 (7)	33 (2)	4 (3)	14 (2)	-4(3)
C(1)	3324 (9)	4137 (8)	1383 (5)	104 (13)	83 (9)	22 (4)	-4(9)	14 (5)	-1(5)
	9085 (9)	2234 (8)	5491 (3)	78(11) 23(2)	79 (8)	30(3)	-2(0) -3(3)	9 (2)	-10(4)
	6334(3)	3374 (6)	8142 (3)	23(2) 28(2)	75 (7)	28(3)	2(3)	5(2)	1 (4)
C(2)	4467 (9)	3558 (8)	1703 (6)	103 (12)	66 (8)	49 (5)	- 8 (9)	11 (6)	- 8 (5)
	9512 (9)	1992 (7)	2456 (6)	151 (14)	66 (7)	44 (5)	38 (9)	30 (7)	9 (5)
	1357 (3)	4184 (6)	4813 (3)	25 (2)	81 (8)	24 (3)	4 (3)	2(2)	-4(4)
C(3)	6452 (3)	4135 (6)	1644 (5)	20 (2)	102 (10)	$\frac{20}{38}(5)$	8 (9)	-10(5)	1 (6)
C(3)	9145 (9)	2582 (9)	1766 (6)	130 (12)	93 (9)	35 (5)	20 (10)	28 (6)	- 1 (6)
	2152 (3)	4391 (6)	4831 (3)	27 (2)	100 (8)	25 (2)	1 (3)	7 (2)	- 2(4)
	7225 (3)	4267 (6)	7408 (3)	33 (3)	83 (8)	23 (2)	6 (4)	6 (2)	6 (3)
C(4)	3281 (8)	2031 (7)	1254 (5)	83 (10)	66 (7)	27 (4)	12 (7)	9 (5)	15 (4)
	8400 (8)	3456 (7)	1/38 (5)	$\frac{73(11)}{23(2)}$	63 (7) 76 (7)	33 (4) 23 (2)	$\frac{3}{2}$	$\frac{3}{4}$	-4(4)
	7900 (3)	3630 (6)	8141 (3)	25(2)	76 (7)	$\frac{23}{28}(2)$	-2(3)	7(2)	-2(3)
C(5)	2136 (9)	2591 (9)	908 (6)	90 (11)	83 (8)	44 (5)	-12 (9)	6 (6)	- 9 (6)
	8023 (8)	3711 (7)	2416 (5)	73 (10)	66 (7)	36 (4)	5 (7)	16 (5)	- 8 (5)
	2710 (4)	2866 (7)	6237 (4)	25 (3)	109 (8)	25 (3)	-2(4)	2(2)	3 (4) 11 (4)
C(6)	7/78 (4)	2888 (7)	8807 (4) 974 (5)	55(5)	91 (9)	$\frac{27}{44} \begin{pmatrix} 3 \end{pmatrix}$	8 (9)	-7(5)	-7(5)
C(0)	8335 (9)	3114(7)	3095 (5)	96 (11)	78 (8)	28 (4)	17 (8)	19 (5)	14 (4)
	1943 (4)	2670 (6)	6225 (4)	32 (3)	80 (9)	33 (3)	- 3 (4)	12 (2)	9 (4)
	6991 (4)	2770 (6)	8880 (4)	30 (3)	103 (8)	26 (3)	8 (4)	9 (2)	13 (4)
C(7)	2970 (9)	4654 (7)	4707 (6)	110 (11)	44 (7)	48 (5)	13 (7)	11 (6)	1 (5)
	5873 (9)	1402 (8)	4944 (6)	$\frac{116}{28}$ (13)	(5)(7)	38 (4)		14(2)	-17(3) 12(4)
	9062 (3)	1324(7) 1101(7)	7600 (3)	18 (2)	103 (8)	30 (3)	2 (4)	2(2)	1 (4)
C(8)	2544 (11)	4866 (8)	3319 (6)	138 (15)	91 (9)	45 (5)	- 26 (10)	- 9 (7)	1 (5)
	4053 (12)	2068 (10)	3951 (7)	159 (18)	74 (8)	68 (7)	38 (11)	12 (9)	7 (6)
	3875 (4)	-1084(7)	4268 (4)	46 (3)	126 (9)	49 (3)	1(5)	16 (3)	23 (5)
C(0)	8972 (4)	- 1309 (7)	6907 (4) 3310 (7)	35 (3) 129 (14)	139 (10)	47 (4) 60 (6)	-51(12)	-23(7)	20 (3) 24 (7)
C(9)	1308 (11) 4974 (14)	4321 (11) 2791 (9)	3957 (7)	262(14)	47 (9)	76 (7)	10 (11)	44 (10)	13 (6)
	3562 (5)	-217(8)	3504 (4)	58 (4)	156 (11)	39 (3)	9 (6)	10 (3)	-13 (5)
	8648 (5)	- 452 (7)	6141 (4)	75 (5)	123 (10)	47 (4)	15 (6)	26 (4)	-21 (5)

#### Table 3 (cont.)

(b)	Fractional coordinates ( $\times 10^3$ ) with e.s.d.'s for the hydrogen	
	atoms of sulphathiazole I and III	

	X	Y	2
H(1)			
	22 (5)	327 (10)	494 (6)
	508 (4)	356 (9)	770 (5)
H(2)	-		-
	50 (4)	199 (8)	574 (5)
	537 (4)	223 (9)	831 (5)
H(3)	519 (12)	402 (10)	203 (7)
	- 3 (13)	129 (10)	248 (7)
	95 (5)	464 (10)	432 (5)
	603 (5)	459 (10)	686 (6)
H(4)	531 (11)	212 (10)	200 (7)
	942 (12)	243 (10)	128 (7)
	229 (5)	479 (10)	439 (6)
	744 (6)	477 (10)	676 (5)
H(5)	145 (12)	216 (10)	65 (7)
	766 (11)	432 (10)	244 (7)
	317 (5)	246 (10)	667 (6)
	819 (5)	255 (10)	921 (6)
H(6)	128 (11)	401 (9)	67 (7)
	814 (11)	329 (9)	358 (7)
	189 (5)	199 (10)	673 (6)
	696 (5)	221 (10)	946 (6)
H(7)	441 (12)	523 (9)	435 (7)
	422 (12)	66 (10)	454 (8)
	439 (5)	- 58 (10)	565 (6)
	941 (5)	- 86 (10)	838 (6)
H(8)	727 (13)	16 (10)	217 (8)
	318 (15)	209 (10)	376 (9)
	389 (6)	-225 (11)	424 (6)
	902 (6)	-246 (11)	698 (6)

#### Table 3 (cont.)

H(9)	57 (14)	445 (12)	296 (8)
. ,	483 (15)	330 (10)	371 (9
	311 (6)	- 60 (12)	273 (6
	880 (6)	- 74 (11)	534 (6

symmetry-related molecules are bonded, *i.e.* no hydrogen bonds exist between the independent molecules IA and IB. This means that two intermeshed but independent systems of hydrogen bonded molecules exist in the crystal. These systems are the same except that N(IA) is bonded only to O(IA) while N(IB) is bonded to both O(IB) and O(2B). All the hydrogen bond distances have normal values. The hydrogen bonding network is shown in Fig. 4.

The crystal structure of, and the hydrogen bonding in, sulphathiazole III is very similar to that of sulphathiazole II. The nitrogen atom N(2) does not participate in any hydrogen bonding and its only close approach that can be regarded as a van der Waals interaction is the N(1A)  $\cdots$  N(2B) distance of 3.223 Å. The independent molecules IIIA and IIIB are bonded into integrated, irregular sheets of molecules that are parallel to the (001) plane. The hydrogen bonding in sulphathiazole III is illustrated by the schematic diagram in Fig. 5. Neighbouring molecules are hydrogen bonded through  $N(1)\cdots O(1)$  and  $N(1)\cdots N(3)$  bonds. The absence of one  $N(1A) \cdots O(1B)$  bond implies that the oxygen atom of molecule IIIA that participates in hydrogen bonding, is bonded to the amine nitrogen atoms of two separate IIIB molecules, while the oxygen atom of molecule IIIB is bonded to the amine nitrogen atom of only one IIIA molecule.

Table 4. Bond lengths (Å) and angles (°) with e.s.d.'s of sulphathiazole 1 and III

#### (a) Bond lengths

0	IA	1 <i>B</i>	IIIA	111 <i>B</i>	Mean
N(1)-C(1)	1.368 (11)	1.382 (11)	1.399 (8)	1.422 (8)	1.394 (18)
C(1) - C(2)	1.390 (12)	1.419 (13)	1.386 (7)	1.385 (7)	1.395 (13)
C(2) - C(3)	1.365 (14)	1.363 (12)	1.398 (8)	1.370 (8)	1.375 (13)
C(3) - C(4)	1.386 (12)	1.389 (13)	1.393 (6)	1.399 (7)	1.392 (5)
C(4) - C(5)	1.384 (12)	1.377 (11)	1.393 (7)	1.386 (8)	1.385 (9)
C(5) - C(6)	1.375 (14)	1.355 (11)	1.350 (9)	1.395 (9)	1.369 (16)
C(6) - C(1)	1.390 (12)	1.395 (12)	1.430 (7)	1.375 (7)	1.397 (18)
C(4) - S(1)	1.749 (9)	1.748 (10)	1.745 (5)	1.769 (6)	1.754 (9)
S(1) - O(1)	1.432 (6)	1.436 (7)	1.450 (4)	1.440 (4)	1.440 (6)
S(1) - O(2)	1.437 (6)	1.415 (7)	1.446 (4)	1.435 (4)	1.434 (10)
S(1) - N(2)	1.615 (8)	1.612 (7)	1.610 (5)	1.602 (5)	1.606 (9)
N(2)-C(7)	1.316 (10)	1.296 (10)	1.321 (7)	1.316 (7)	1.312 (10)
S(2) - C(7)	1.733 (9)	1.736 (10)	1.727 (6)	1.752 (5)	1.738 (9)
C(7) - N(3)	1.349 (11)	1.369 (10)	1.344 (7)	1.343 (7)	1.347 (12)
N(3) - C(8)	1.357 (10)	1.371 (12)	1.385 (7)	1.371 (7)	1.372 (9)
C(8) - C(9)	1.297 (13)	1.324 (14)	1.327 (9)	1.327 (8)	1.318 (11)
C(9) - S(2)	1.742 (12)	1.705 (12)	1.735 (7)	1.737 (7)	1.728 (14)
N(1) - H(1)			0.82	0.90	0.87
N(1) - H(2)	_		0.98	0.96	0.93
C(2) - H(3)	1.00	1.04	0.91	0.98	0.97
C(3)-H(4)	1.06	0.98	0.88	1.28	1.03
C(5) - H(5)	0.91	0.90	0.90	0.78	0.88
C(6) - H(6)	1.03	0.94	1.02	1.04	0.99
N(3) - H(7)	1.06	0.93	0.89	1.03	0.96
C(8) - H(8)	1.00	0.87	1.00	1.00	0.96
C(9) - H(9)	0.89	0.79	1.20	1.40	1.03

angles	I <i>A</i>	I <i>B</i>	IIIA	III <i>B</i>	Mean
N(1)-C(1)-C(2)	120.7 (9)	120.1 (9)	122.5 (5)	121.9 (5)	121.5 (9)
N(1) - C(1) - C(6)	121.9 (9)	122.6 (9)	119.4 (5)	117.2 (5)	120.1 (19)
C(1) - C(2) - C(3)	122.6 (9)	120.4 (9)	120.5 (5)	120.9 (5)	121.0 (8)
C(2) - C(3) - C(4)	119.3 (8)	120.8 (9)	120.1(5)	119.1 (5)	119.9 (6)
C(3) - C(4) - C(5)	119.3 (9)	118.9 (9)	119.6 (5)	119.6 (5)	119.4 (4)
C(4) - C(5) - C(6)	120.8 (8)	121.2 (9)	120.5 (5)	121.0 (5)	120.7(4)
C(5) - C(6) - C(1)	120.7 (9)	121.4 (9)	121.2 (6)	118.4 (5)	120.5 (11)
C(6) - C(1) - C(2)	117.4 (9)	117.3 (9)	118.0 (5)	120.9 (5)	118.4 (13)
C(3) - C(4) - S(1)	120.5 (7)	120.1(7)	120.9 (4)	121.2 (4)	120.7 (4)
C(5) - C(4) - S(1)	120.2 (7)	120.8 (8)	119.5 (4)	119.1 (4)	119.9 (7)
C(4) - S(1) - O(1)	108.2 (4)	107.1 (4)	107.9 (2)	$107 \cdot 1(3)$	107.5(5)
C(4) - S(1) - O(2)	107·3 (4)	108.1 (4)	107.6 (2)	108.3 (2)	107.8 (4)
O(1) - S(1) - O(2)	117.7 (4)	118.1 (5)	$116 \cdot 1 (2)$	116.8 (3)	117.1(8)
N(2) - S(1) - O(1)	104.2 (4)	$103 \cdot 1 \cdot (4)$	105.7 (2)	105·8 (2)	104.8 (9)
N(2) - S(1) - O(2)	111.2 (4)	$112 \cdot 2(4)$	113.9 (3)	113.6 (3)	113.0 (11)
N(2) - S(1) - C(4)	107.8 (4)	107.7 (4)	105.0 (3)	104.3 (3)	105.9 (17)
S(1) - N(2) - C(7)	1 <b>20</b> ·9 (5)	120.2(5)	119.6 (4)	120.4 (4)	120.2 (5)
N(2) - C(7) - S(2)	130.3 (8)	132.0 (8)	$131 \cdot 1$ (5)	129.8 (4)	130.8 (8)
N(2) - C(7) - N(3)	120.7 (10)	1 <b>20·2</b> (9)	119.4 (5)	122.0(5)	120.6 (8)
C(7) - N(3) - C(8)	115.3 (8)	114.6 (9)	115.1 (5)	116.7 (5)	115.6 (8)
N(3) - C(8) - C(9)	113.8 (10)	114.1 (10)	113.0 (6)	112.8(6)	113.5(5)
C(8) - C(9) - S(2)	111.7 (8)	111.0 (8)	$111 \cdot 1(5)$	111.4(5)	111.3(4)
C(9) - S(2) - C(7)	90·0 (5)	92·4 (6)	91·2 (3)	90·9 (3)	91.1 (8)
S(2) - C(7) - N(3)	109.0 (7)	107·8 (8)	109.5 (4)	108.1 (4)	108.6 (6)
H(1) - N(1) - C(1)			92	122	110
H(2) - N(1) - C(1)			101	118	112
H(3) - C(2) - C(1)	107	111	125	128	118
H(4) - C(3) - C(4)	120	117	112	111	116
H(5) - C(5) - C(4)	109	120	115	109	114
H(6) - C(6) - C(1)	122	115	122	126	121
H(7) - N(3) - C(7)	123	102	119	116	116
H(8)-C(8)-N(3)	138	134	124	117	127
H(9) - C(9) - C(8)	91	95	129	123	114

#### Table 4 (cont.)

Comparison of these two crystal structures with that of sulphathiazole II shows that the main difference lies in the types of hydrogen bonds present and their effects on the arrangement of molecules in the crystal. Although sulphathiazole I has the additional  $N(2) \cdots N(3)$  bond and uses O(2) in a  $N(1) \cdots O(2)$  bond, the number of bonds per molecule is the same as in form III. The strengths of the hydrogen bonds as shown by their bond

(b) Bond

distances are very similar and no definite conclusion as to changes in stability due to differing hydrogen bonding can be made. A similar situation has been encountered with the crystal structures of barbital I and II (Craven, Vizzini & Rodrigues, 1969) and amobarbital I and II (Craven & Vizzini, 1969). These structures are also characterized by the small differences between polymorphs.

Fig. 3. A stereo pair showing the unit cell and its contents of sulphathiazole III viewed along the b axis with the c axis vertical.

Modification I is the most suitable form of sulphathiazole for pharmaceutical use owing to its higher rate of dissolution. It is clear from these structure analyses that this is not a result of striking differences in the numbers of hydrogen bonds in the different polymorphs but rather a consequence of more subtle bonding effects. Evidence of the weaker bonding in modification I lies in its density which is significantly (4%) lower than that of the other two polymorphs.

# Table 5. The least-squares planes through the benzene and thiazole rings for sulphathiazole I and III

The equations of the planes are of the form AX+BY+CZ+D=0 and were calculated with reference to the orthogonal coordinate system  $a, b, c^*$ . The deviations from the planes are in Å.

(a) Planes through the six benzene ring atoms

Coeffi-	Molecules			
cients	1A	1 <i>B</i>	IIIA	111 <i>B</i>
A	-0.499	0.760	-0.125	-0.066
В	-0.070	0.528	0.830	0.869
С	0.863	0.379	0.544	0.491
D	0.151	9.525	6.793	7.849
C(1)	0.011	-0.009	-0.014	-0.012
C(2)	-0.006	0.018	0.010	0.002
C(3)	-0.001	-0.011	-0.003	0.003
C(4)	0.014	-0.002	0.001	-0.004
C(5)	-0.009	0.014	-0.006	-0.003
C(6)	-0.004	-0.001	0.013	0.011
N(1)	0.063	-0.041	-0.014	-0.003
S(1)	0.112	0.104	-0.017	0.033
H(3)	0.11	-0.10	0.00	-0.05
H(4)	0.17	0.01	-0.15	-0.13
H(5)	-0.04	0.16	-0.03	-0.05
H(6)	-0.08	0.06	-0.02	0.03

(b) Planes	through the	atoms C(7),	N(3), C(8) a	nd C(9)
Coeffi-	Molecules			
cients	1.4	1 <i>B</i>	IIIA	111 <i>B</i>
A	-0.347	-0.201	0.994	0.991
В	0.935	0.496	0.111	0.131
С	0.072	0.709	-0.001	-0.010
D	6.026	4.814	4.082	l1·229
C(7)	0.002	-0.007	0.001	-0.002
N(3)	-0.004	0.013	-0.002	0.003
C(8)	0.004	-0.013	0.002	-0.003
C(9)	-0.005	0.007	-0.001	0.002
S(2)	0.102	0.037	0.013	0.037
N(2)	-0.054	-0.048	0.030	0.003
H(7)	0.08	-0.18	0.11	-0.10
H(8)	0.14	0.19	-0.06	-0.10
H(9)	0.11	0.02	-0.36	0.72
(c) Dihedi	al angles			
	IA	1 <i>B</i>	111 <i>A</i>	[]] <i>B</i>
	101.26	98.62	91.87	100.04

Polymorphs II and III change into polymorph 1 on slow heating to 173–175°C. Rapid heating causes III to melt at this temperature with no apparent phase change before melting. The presence of the most active form (I) can thus be ensured by slow heating to temperatures between 175 and 200°C. Reversion from the metastable polymorph I to one of the other two forms takes Table 6. Intermolecular distances

(a) Hydrogen bonding					
	IA		I <i>B</i>		
	$N(1A) \cdots O(2A)$ $N(2A) \cdots N(3A)$ $N(2A) \cdots H(7A)$	3·088 Å 2·874 1·87	$\begin{array}{l} N(1B) \cdots O(1B) \\ N(1B) \cdots O(2B) \\ N(2B) \cdots N(3B) \\ N(2B) \cdots H(7B) \end{array}$	2·940 Å 2·959 2·877 1·95	
	111 <i>A</i>		111 <i>B</i>		
	$\begin{array}{c} N(1A) \cdots O(1B) \\ N(1A) \cdots N(3B) \\ N(1A) \cdots H(7B) \\ O(1A) \cdots N(1B) \\ O(1A) \cdots H(1B) \\ O(1A) \cdots H(1B) \\ O(1A) \cdots H(2B) \\ N(3A) \dots N(1B) \end{array}$	3.026 Å 2.925 1.91 3.010 2.16 3.022 2.17 2.871	$\begin{array}{c} N(1B) \cdots O(1A) \\ N(1B) \cdots O(1A) \\ N(1B) \cdots N(3A) \\ N(1B) \cdots H(7A) \\ O(1B) \cdots N(1A) \\ O(1B) \cdots H(2A) \\ N(3B) \cdots N(1A) \end{array}$	3.010 Å 3.022 2.871 2.06 3.026 2.07 2.925	
	(b) Other close ap	proaches			
	Form 1	-			
	$\begin{array}{c} N(1A) \cdots C(7B) \\ N(1A) \cdots N(1B) \\ N(1A) \cdots O(2B) \end{array}$	3·238 Å 3·392 3·449	$O(1B) \cdots N(3B)$	3.249	
	$\begin{array}{l} N(1A) \cdots N(2B) \\ O(1A) \cdots C(6B) \\ O(1A) \cdots C(5B) \\ O(2A) \cdots C(2A) \\ C(4A) \cdots C(7A) \\ N(2A) \cdots C(3A) \\ N(3A) \cdots C(9B) \end{array}$	3.451 3.369 3.375 3.288 3.389 3.455 3.285	$C(4B)\cdots C(7B)$ $C(5B)\cdots N(2B)$	3·383 3·316	
	Form III				
	$\begin{array}{l} N(1A) \cdots N(2B) \\ N(1A) \cdots O(1B) \\ O(1A) \cdots C(6B) \\ O(1A) \cdots C(1B) \\ O(2A) \cdots C(2B) \\ O(2A) \cdots C(2B) \\ C(7A) \cdots C(8A) \\ N(3A) \cdots N(3A) \\ N(3A) \cdots C(1B) \\ N(3A) \cdots C(6B) \\ N(3A) \cdots C(8A) \end{array}$	3·223 Å 3·252 3·344 3·432 3·215 3·366 3·484 3·266 3·375 3·375 3·429 3·471	$O(1B) \cdots C(6A)$ $O(2B) \cdots C(3A)$ $O(2B) \cdots C(2A)$ $O(2B) \cdots N(3B)$ $N(3B) \cdots C(1A)$ $N(3B) \cdots C(6A)$	3·445 3·271 3·388 3·406 3·366 3·473	
0 2 962 0					
	H N H 2 961, 3 080				
		i			



Fig. 4. The hydrogen bonding in sulphathiazole I.

place slowly at room temperature but the kinetics of the process has not been studied as extremely long times are involved.



Fig. 5. The hydrogen bonding in sulphathiazole III.

Acta Cryst. (1972). B28, 283

#### References

- BUSING, W. R., MARTIN, K. O. & LEVY, H. A. (1962). ORFLS. ORNL-TM-305, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
- BUSING, W. R., MARTIN, K. O. & LEVY, H. A. (1964). ORFFE. ORNL-TM-306, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
- CRAVEN, B. M. & VIZZINI, E. A. (1969). Acta Cryst. B25, 1993.
- CRAVEN, B. M., VIZZINI, E. A. & RODROGUES, M. M. (1969). Acta Cryst. B25, 1978.
- DUNNING, A. J. & VAND, V. (1969). Acta Cryst. 15, 1092. HANSON, H. P., HERMAN, F., LEA, J. D. & SKILLMAN, S.
- (1964). Acta Cryst. 17, 1040. HUGHES, E. W. (1941). J. Amer. Chem. Soc. 63, 1737.
- JOHNSON, C. K. (1965). ORTEP, A Fortran Thermal Ellipsoid Plot Program for Crystal Structure Illustrations. ORNL-3794, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
- KRUGER, G. J. & GAFNER, G. (1972). Acta Cryst. To be published.
- STEWART, J. M. (1967). Technical Report 67–58. Computer Science Center, Univ. of Maryland.

# The Crystal and Molecular Structure of 2-Thioamidopyridine

BY T. C. DOWNIE^{*}, W. HARRISON[†] AND E. S. RAPER[‡] Department of Chemistry, Newcastle-upon-Tyne Polytechnic, Newcastle-upon-Tyne, England

#### AND M. A. HEPWORTH

Magnesium Elektron Ltd, Manchester, England

#### (Received 2 December 1970)

Crystals of 2-thiamidopyridine,  $C_6H_6N_2S$ , are monoclinic, space group  $P2_1/c$  with four molecules in a unit cell of dimensions a=5.79, b=7.42 and c=16.26 Å,  $\beta=106.9^{\circ}$ . The crystal structure was solved by three-dimensional Patterson and Fourier syntheses using the heavy-atom technique. The atomic parameters were refined by block-matrix least-squares calculations. Hydrogen atoms were located but their parameters were not refined. The final R index was 0.069 from 1004 observed reflexions, collected using Cu Ka radiation. The mean bond lengths are C-C=1.383, C-N=1.336 Å in the pyridine ring and C-C=1.505, C-N=1.325, C-S=1.657 Å in the thioamido group with a mean e.s.d. of 0.006 Å. Bond lengths and angles in the thioamido group suggest that the electron configuration contains contributions from the ionic canonical form as well as the amide form. The angle between the plane of the pyridine ring and that of the thioamido group is 10.5°. Non-bonded contact radii of some atoms are proposed to interpret the twisting between the thioamido group and the pyridine ring. Pairs of hydrogen bonds of the type N-H...S and 3.43 Å in length join molecules together across centres of symmetry.

#### Introduction

The corrosion inhibitive properties of aliphatic and aromatic amines, as well as nitrogen heterocyclic compounds, have been known for some time. (Rhodes & Khun, 1929; Mann, Lauer & Hultin, 1936). Sulphurcontaining compounds such as thiourea derivatives and mercapto-imidazole derivatives have also been extensively used as inhibitors. (Aronson & Belen'kii, 1964). In view of the chelating ability of 2-thioamidopyridine (2-thiopic) to group IIB metals (Sutton, 1963) and certain transition metals (Sutton, 1966) the corrosion inhibitive properties of 2-thiopic were investigated, the compound was found to reduce the corrosion rate of carbon steels in 0.2N sulphuric acid by 40%. (Osborne, 1968).

In its chelation with metals, 2-thiopic always uses its pyridine nitrogen atom as well as either the nitrogen atom or the sulphur atom of the side chain. Spectro-

^{*} Present address: Thames Polytechnic, Wellington St., Woolwich, London S.E.18, England.

[†] Present address: University of British Columbia, Vancouver, Canada.

[‡] To whom enquiries should be addressed.